Machine Learning Dasar dengan Scikit-Learn
- Deskripsi
- Materi
- Ulasan
Apa yang akan Anda pelajari
☑️ Pengenalan dan Alur Kerja Machine Learning: Mengenal konsep dasar dan langkah-langkah utama dalam machine learning. ☑️ Dataset dan Data Preprocessing: Belajar memuat dan memproses data dengan teknik-teknik seperti label encoding dan one-hot encoding. ☑️ Regresi Sederhana dan Klasifikasi Dasar: Pemahaman regresi linear, regresi KNN, klasifikasi KNN, dan multiple/polynomial regression. |
☑️ Algoritma Klasifikasi Populer: Logistic regression, naive Bayes, support vector machine (SVM), decision tree, dan random forest. ☑️ Pemrosesan Teks dengan TF-IDF dan Bag of Words: Memahami teknik dasar dalam pengolahan teks untuk machine learning. |
Kursus ini dirancang untuk memberikan pemahaman dasar mengenai machine learning dengan Python menggunakan library Scikit-Learn. Mulai dari alur kerja pemrosesan data, penggunaan algoritma regresi dan klasifikasi, hingga metode encoding untuk data kategori dan pemrosesan teks. Peserta akan mempelajari berbagai teknik machine learning yang aplikatif dalam dunia nyata, sehingga siap membangun model prediktif sederhana.
-
1SKLearn 00: Dasar Machine Learning dengan Scikit-LearnPratinjau 2:26
-
2SKLearn 01: Pengenalan Machine Learning DasarPratinjau 16:31
-
3SKLearn 02: Dataset pada Scikit-LearnPratinjau 24:45
-
4SKLearn 03: Workflow Machine Learning dengan Scikit-LearnPratinjau 15:55
-
5SKLearn 04: Data Preprocessing pada Scikit-LearnSorry, this lesson is currently locked. You need to complete "SKLearn 03: Workflow Machine Learning dengan Scikit-Learn" before accessing it.
-
6SKLearn 05: Simple Linear Regression dengan Scikit-LearnSorry, this lesson is currently locked. You need to complete "SKLearn 04: Data Preprocessing pada Scikit-Learn" before accessing it.
-
7SKLearn 06: Klasifikasi dengan K-Nearest Neighbors (KNN)Sorry, this lesson is currently locked. You need to complete "SKLearn 05: Simple Linear Regression dengan Scikit-Learn" before accessing it.
-
8SKLearn 07: Regresi dengan K-Nearest Neighbors (KNN)Sorry, this lesson is currently locked. You need to complete "SKLearn 06: Klasifikasi dengan K-Nearest Neighbors (KNN)" before accessing it.
-
9SKLearn 08: Multiple & Polynomial RegressionSorry, this lesson is currently locked. You need to complete "SKLearn 07: Regresi dengan K-Nearest Neighbors (KNN)" before accessing it.
-
10SKLearn 09: Label Encoding & One Hot EncodingSorry, this lesson is currently locked. You need to complete "SKLearn 08: Multiple & Polynomial Regression" before accessing it.
-
11SKLearn 10: Bag of Words & Stop Word FilteringSorry, this lesson is currently locked. You need to complete "SKLearn 09: Label Encoding & One Hot Encoding" before accessing it.
-
12SKLearn 11: TF-IDF untuk Pemrosesan TeksSorry, this lesson is currently locked. You need to complete "SKLearn 10: Bag of Words & Stop Word Filtering" before accessing it.
-
13SKLearn 12: Logistic Regression untuk Binary ClassificationSorry, this lesson is currently locked. You need to complete "SKLearn 11: TF-IDF untuk Pemrosesan Teks" before accessing it.
-
14SKLearn 13: Naive Bayes ClassificationSorry, this lesson is currently locked. You need to complete "SKLearn 12: Logistic Regression untuk Binary Classification" before accessing it.
-
15SKLearn 14: Support Vector Machine (SVM) ClassificationSorry, this lesson is currently locked. You need to complete "SKLearn 13: Naive Bayes Classification" before accessing it.
-
16SKLearn 15: Decision Tree Classification (Pohon Keputusan)Sorry, this lesson is currently locked. You need to complete "SKLearn 14: Support Vector Machine (SVM) Classification" before accessing it.
-
17SKLearn 16: Random Forest Classification (Hutan Acak)Sorry, this lesson is currently locked. You need to complete "SKLearn 15: Decision Tree Classification (Pohon Keputusan)" before accessing it.

SKLearn 00: Dasar Machine Learning dengan Scikit-Learn
Jam Kerja
Monday | 07.00 WIB - 16.00 WIB |
Tuesday | 08.00 WIB - 15.00 WIB |
Wednesday | 06.00 WIB - 15.00 WIB |
Thursday | 07.00 WIB - 16.00 WIB |
Friday | 08.00 WIB - 15.00 WIB |
Saturday | Closed |
Sunday | Closed |