Pemrograman dan Algoritma Machine Learning: Dari Decision Tree hingga Naive Bayes
- Deskripsi
- Materi
- Ulasan
Apa yang akan Anda pelajari
☑️ Supervised Learning – Pengantar: Memahami dasar supervised learning dan perannya dalam analisis data. ☑️ Konsep Klasifikasi: Menjelaskan konsep dasar klasifikasi dan algoritma yang sering digunakan. ☑️ Decision Tree – Pengantar hingga Induksi: Mendalami decision tree, atribut seleksi, serta algoritma ID3, C4.5, dan CART. |
☑️ Evaluasi Kinerja Klasifikasi: Menjelaskan cara mengevaluasi model dengan metrik seperti precision, recall, dan F1 score. ☑️ Implementasi Naive Bayes dan K-NN: Memahami algoritma Naive Bayes dan K-NN melalui studi kasus numerik. |
Kursus ini mengajarkan algoritma dan teknik dasar dalam supervised learning, khususnya untuk algoritma decision tree, naive Bayes, dan k-nearest neighbors (K-NN). Peserta akan mempelajari teori serta aplikasi praktis dari setiap algoritma, termasuk contoh numerik dan implementasi di perangkat lunak seperti WEKA dan Rapidminer. Kursus ini cocok untuk mereka yang sudah memahami dasar-dasar machine learning dan ingin memperdalam pengetahuan dalam klasifikasi dan analisis data.
-
11. Supervised Learning - An OverviewPratinjau 47:51
-
22. Classification Basics - ConceptsPratinjau 47:40
-
33. Decision Trees - IntroductionPratinjau 30:48
-
44. Decision Trees - Specifying Test Condition & Attribute Selection MeasuresSorry, this lesson is currently locked. You need to complete "3. Decision Trees - Introduction" before accessing it.
-
55. Decision Tree Induction Using ID3, Information Gain (with Solved Example)Sorry, this lesson is currently locked. You need to complete "4. Decision Trees - Specifying Test Condition & Attribute Selection Measures" before accessing it.
-
66. Decision Tree Induction Using C4.5 or Gain Ratio (with Solved Example)Sorry, this lesson is currently locked. You need to complete "5. Decision Tree Induction Using ID3, Information Gain (with Solved Example)" before accessing it.
-
77. Decision Tree Induction using CART or Gini Index (with Solved Example)Sorry, this lesson is currently locked. You need to complete "6. Decision Tree Induction Using C4.5 or Gain Ratio (with Solved Example)" before accessing it.
-
88. Decision Tree Induction: Comparison Between Attribute Selection Measures, Overfitting, & PruningSorry, this lesson is currently locked. You need to complete "7. Decision Tree Induction using CART or Gini Index (with Solved Example)" before accessing it.
-
99. Decision Tree Induction in WEKASorry, this lesson is currently locked. You need to complete "8. Decision Tree Induction: Comparison Between Attribute Selection Measures, Overfitting, & Pruning" before accessing it.
-
1010. Decision Tree Induction in RapidminerSorry, this lesson is currently locked. You need to complete "9. Decision Tree Induction in WEKA" before accessing it.
-
1111. Naive Bayes Classifier (with Solved Numerical Example)Sorry, this lesson is currently locked. You need to complete "10. Decision Tree Induction in Rapidminer" before accessing it.
-
1212. Classifier Performance Evaluation Metrics - Confusion Matrix, Precision, Recall, Sensitivity, F1Sorry, this lesson is currently locked. You need to complete "11. Naive Bayes Classifier (with Solved Numerical Example)" before accessing it.
-
1313. K-Nearest Neighbors (K-NN) with Solved Numerical ExampleSorry, this lesson is currently locked. You need to complete "12. Classifier Performance Evaluation Metrics - Confusion Matrix, Precision, Recall, Sensitivity, F1" before accessing it.

1. Supervised Learning - An Overview
Jam Kerja
Monday | 07.00 WIB - 16.00 WIB |
Tuesday | 08.00 WIB - 15.00 WIB |
Wednesday | 06.00 WIB - 15.00 WIB |
Thursday | 07.00 WIB - 16.00 WIB |
Friday | 08.00 WIB - 15.00 WIB |
Saturday | Closed |
Sunday | Closed |